Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Path planning is a critical task for autonomous driving, aiming to generate smooth, collision-free, and feasible paths based on input perception and localization information. The planning task is both highly time-sensitive and computationally intensive, posing significant challenges to resource-constrained autonomous driving hardware. In this article, we propose an end-to-end framework for accelerating path planning on FPGA platforms. This framework focuses on accelerating quadratic programming (QP) solving, which is the core of optimization-based path planning and has the most computationally-intensive workloads. Our method leverages a hardware-friendly alternating direction method of multipliers (ADMM) to solve QP problems while employing a highly parallelizable preconditioned conjugate gradient (PCG) method for solving the associated linear systems. We analyze the sparse patterns of matrix operations in QP and design customized storage schemes along with efficient sparse matrix multiplication and sparse matrix-vector multiplication units. Our customized design significantly reduces resource consumption for data storage and computation while dramatically speeding up matrix operations. Additionally, we propose a multi-level dataflow optimization strategy. Within individual operators, we achieve acceleration through parallelization and pipelining. For different operators in an algorithm, we analyze inter-operator data dependencies to enable fine-grained pipelining. At the system level, we map different steps of the planning process to the CPU and FPGA and pipeline these steps to enhance end-to-end throughput. We implement and validate our design on the AMD ZCU102 platform. Our implementation achieves state-of-the-art performance in both latency and energy efficiency compared with existing works, including an average 1.48× speedup over the best FPGA-based design, a 2.89× speedup compared with the state-of-the-art QP solver on an Intel i7-11800H CPU, a 5.62× speedup over an ARM Cortex-A57 embedded CPU, and a 1.56× speedup over state-of-the-art GPU-based work. Furthermore, our design delivers a 2.05× improvement in throughput compared with the state-of-the-art FPGA-based design.more » « lessFree, publicly-accessible full text available September 30, 2026
-
Autonomous Driving (AD) is a rapidly developing technology and its security issues have been studied by various recent research works. With the growing interest and investment in leveraging intelligent infrastructure support for practical AD, AD system may have new opportunities to defend against existing AD attacks. In this paper, we are the first to systematically explore such a new AD security design space leveraging emerging infrastructure-side support, which we call Infrastructure-Aided Autonomous Driving Defense (I-A2D2). We first taxonomize existing AD attacks based on infrastructure-side capabilities, and then analyze potential I-A2D2 design opportunities and requirements. We further discuss the potential design challenges for these I-A2D2 design directions to be effective in practice.more » « less
An official website of the United States government

Full Text Available